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Trace Ions in Countercurrent Electrolysis in a Thin, 
Porous Membrane 

K KON'MURI 
DEPARTMENT OF CHEMISTRY 
HELSINKI UNIVERSITY OF TECHNOLOGY 
SF-02150 ESPOO. FINLAND 

Abstract 

The transport of trace ions added to a binary electrolyte system through a 
porous membrane during countercurrent electrolysis has been studied both 
theoretically and experimentally. Theoretical models based both on the general 
transport equations and on the Nernst-Planck equations are presented. Experi- 
ments and calculations for the binary system NaCI-H20 with trace ions Li' and 
K+ were performed. The theoretical model was able to predict the transport 
phenomena fairly well. 

INTRODUCTION 

It has been shown that countercurrent electrolysis in a thin porous 
membrane can be used to separate ions of different mobilities both in 
systems consisting of strong electrolytes (1-3) and of weak electrolytes (4).  
In this paper a special case, a binary system with trace ions, is studied. A 
trace ion is defined as an ion which is added to a system in such small 
amounts that its effect on the main system-here the binary one-is 
negligible. Evidently the main system has a great effect on the trace 
ion. 

From a practical point of view, the concept of trace-ion transport is 
important: consider a separation process that has continued for so long 
that very high separation efficiency has been reached. Then the ion 
making the solution impure is a typical example of a trace ion. The case 
is the same if we start to separate some valuable ion from the solution in 
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KONTTURI 592 

which it is present in only small amounts. It is clear that if the 
mathematical solution is easier in the case of a trace ion than in the case 
of a real ternary system (I, 3) it is very reasonable to use the trace-ion 
approach. We will show that this is really the case, and mathematical 
modeling can be simplified considerably by using the concept of a trace 
ion. By modeling the transport of a trace ion in countercurrent 
electrolysis in a thin porous membrane, it will be shown that the closed 
form solution of the transport problem can be obtained. Although the 
solution is not obtainable in the form of elementary functions, it is a step 
forward for a simpler interpretation of the transport process. 

It can be easily imagined that the solution of transport of a trace ion 
can be used as a first approximation when dealing with cases where the 
concentration of one ion is low but not so low that the trace-ion 
assumption (i.e., not effecting the main system) is strictly valid. In the 
present work the behavior of trace-ions in countercurrent electrolysis will 
be studied in detail. This approach is also important in the study of 
mobilities and charge density distributions in polyelectrolyte solution 
provided that polyelectrolytes are added to a solution containing some 
salt which forms the “main” binary system. 

TRANSPORT EQUATIONS FOR TRACE IONS 

The transport of ions in porous membrane in multicomponent system 
can be represented by 

where 

The ionic flow is 4, consisting of the diffusional flow J?IFF, the 
migration flow JFGR, and the convective flow JYoN. Furthermore, ti is the 
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TRACE IONS IN COUNTERCURRENT ELECTROLYSIS 593 

transport number, z,  is the charge number, c, is the concentration of ion i, 
c, is the concentration and DIJ are the diffusion coefficients of component 
j ,  v,, is the stoichiometric coefficient of ion i, F is the Faraday constant, I is 
the electric current density, and v is the velocity of solvent flow through 
the membrane (here referred to as convection). Quantities v and v,, and 
thus J ,  and Jfo? are expressed with reference to the membrane. 

We begin by considering such an aqueous quaternary system which 
consists of three cations with a common anion. This kind of system is 
general enough to give information on coupling effects between the main 
binary system and the trace ions as well as between the different trace 
ions themselves. 

The lack of measured data for transport quantities means that we have 
to estimate the concentration dependences of these quantities. A simple 
and efficient way to estimate diffusion coefficients and transport 
numbers in multicomponent systems is offered by the Nernst-Planck 
equations (5). Thus we can estimate the diffusion coefficients from 

and the transport numbers 

C ihi t .  = ~ ; i = l , 2 , 3 , 4  

C k h k  
k = I  

(3)  

where oii is Kronecker's delta (q = 1 when i # j ;  oii = 0 when i Zj), and 
h, is the molar conductivity of ion i. Subscripts 1,  2, and 3 denote the 
cations and subscript 4 denotes the common anion. Furthermore, the 
subscript 1 denotes the cation of the main binary system and subscripts 2 
and 3 denote the trace ions. 

The solution of the transport equations is simplified by using the trace- 
ion assumptions. Since the trace ions have been added to the main binary 
system in small amounts, it follows that 

t2,  t3  << t ,  since c2 ,  c3  << c I  (4) 

Assumption (4) is not sufficient to guarantee that the trace ions do not 
have an effect on the main binary system. This is achieved by assuming 
that the trace ions cannot maintain steep concentration gradients, i.e., 
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594 KONTTURI 

and 

Using these assumptions, the transport equations for the cations take 
the forms 

F v2D22 dc2 + t 2  - + c2v J - - v D  1- dc 
dx dx z2 F 

2 -  2 21 

where the transport quantities are 

A, 
h, + ----A4 

I z4l 

t ,  = 
z 

h2R T 
0 2 2  = 
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TRACE IONS IN COUNTERCURRENT ELECTROLYSIS 595 

The following conclusions can be drawn from transport Eqs. (6)-(8) 
together with Eqs. (9) and (10): The main binary system has the form of a 
pure binary system and the trace ions do not have effect on it. The binary 
system couples strongly with the diffusion of the trace ions in the case of 
steep concentration profiles of the binary system. These coupling effects 
vanish when the binary system is homogeneous or when the diffusion 
potential approaches zero, i.e., and/or D31 = 0 since (z,h,/z,) - 
(zp,hJz:) N 0 and/or (z3hl/z1) - ( z 3 z 1 ~ z ~ )  N 0. The transport of a trace ion 
is independent of the other trace ions present in the system. 

Equations (6)-(10) can now be solved if, e.g., the boundary concentra- 
tions, convection, and electric current density are given. In order to solve 
this system we first solve the binary case, i.e., Eq. (6), and then use this 
solution to solve Eqs. (7) and (8). All the equations are linear first-order 
differential equations that are easy to solve. 

An important fact can be found by comparing Eqs. (6)-(10) with the 
Nernst-Planck equations. If we write the Nernst-Planck equation for 
every ion and first solve the binary case without taking the trace ions into 
account, the solution for the concentration profiles and for the electric 
potential distribution cp = q(x) is obtained. By substituting this potential 
distribution into the Nernst-Planck equations of the trace ions and 
solving the resulting equations, the same solutions obtained for the trace- 
ion case using Eqs. (6)-( lo)* results. Thus it is concluded that the electric 
potential in the Nernst-Planck equation takes into account the coupling 
effects. Furthermore, this is an easy way to consider the behavior of the 
trace ions, since it is only necessary to solve the main system to obtain 
cp = q(x) and thus obtain a set of independent differential equations for 
the trace ions. The situation resembles the case of Goldman's constant 
field approximation (6) except that the above procedure is not an 
approximation, it is as exact as the Nernst-Planck equations. 

*Note that in Eqs. (6)-(10) we have used Nernst-Plack equations to get approximations 
for the transport quantities Dii and ti; they are not Nernst-Planck equations. 
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TRACE IONS IN COUNTERCURRENT ELECTROLYSIS 

Let us consider a cell as schematically represented in Fig. 1. We set the 
problem as follows: Into Compartment p we put the mixture of three 
univalent salts in water, i.e., z ,  = z2 = z3 = -z4 = 1. The concentration of 
one of these salts is approximately one thousand times greater than the 
concentrations of the two other salts. When the stationary state has been 
reached, the fluxes of each ion through the porous membrane are given 
by 

J, = -CPVa/A (11) 

It is convenient to use the following dimensionless quantities: 

v c  = IWAD, 
va = Val /ADo 

x = X I 1  

d ,  = Dij /Do 

where C, is the scaling concentration, 1 is the thickness of the membrane, 
A is its surface area, A11 is the membrane constant, and Do is the scaling 
diffusion coefficient. Using these notations, the solution of Eq. (6) can be 
presented in the form 

By substituting Eq. (12) into the Eqs. (7) and (8), solutions for the trace 
ions are obtained: 

exp (T2)[(y;I + B )  exp ( a )  - B]-'1 (13) 
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FIG. 1. Schematic drawing of the cell. A thin, porous membrane (M) divides the cell into two 
compartments a and p. The volume of Compartment is so large compared to the volume 
of Compartment a that the concentrations in Compartment b remain constant during the 
measurements. The solutions in Compartments a and j3 are well mixed. 0 is the cathode 
and @ is the anode, and they are separated from Compa$nents a and p by anion exchange 
membranes (AM). Water is pumped at a constant rate (V") to Compartment a. Part of this 
water stream flows out of Compartment a as the outflow stream Vp whi!e the rest flows by 

convection through the porous membrane (Vc = - Ya). 

>I 
B a 1  

= { (yp)-"' + 
Y: 4 3  

I, exp ( T a [ ( y y  + B) exp (ax)  - B]-"'dx 

exp (T,)[(y: + B )  exp (a) - B]-"1 (14) 

where 

A - h  IPO BI = + 

A, + A4 a B ( D ,  + D4)  

As can be seen from Eqs. (13) and (14)' the integrals cannot be presented 
using elementary functions. However, this is not a problem since these 
integrals are easy to evaluate by numerical integration routines. 
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598 KONTTURI 

TABLE 1. Experimental Results in the System 

vc -4 -4 Ga+ % + X I @  G + x  I d  % i + X l d  
(expt) (expt) (theoret) (expt) WPt) (theoret) (expt) 

1.76 18.65 18.78 I .22 0.62 0.52 0.9 1 
3.39 24.87 27.87 1.31 0.76 0.65 0.87 
4.84 33.16 3 1.42 1.28 0.84 0.7 1 0.70 
6.64 36.27 35.27 1.21 0.92 0.76 0.5 I 
9.90 39.38 35.90 0.96 0.93 0.75 0.22 

1.76 37.31 35.07 2.16 0.83 0.87 1.74 
3.39 49.74 47.25 2.26 1.11 1.02 1.53 
4.84 66.32 49.74 2.62 1.16 I .07 1.21 
6.64 72.54 65.08 2.23 1.51 1.22 1.10 
9.90 78.76 69.22 1.85 1.65 1.23 0.60 

I .76 78.76 68.39 4.11 1.79 1.55 3.39 
3.39 99.48 89.12 4.26 1.98 1.75 3.10 
4.84 132.6 165.7 4.30 2.20 1.92 2.75 
6.64 145. I 120.2 4.12 2.70 2.00 2.27 
9.90 157.5 131.8 3.43 2.98 2.07 1.37 

-. 

uThe measured concentrations and fluxes (expt) of sodium, potassium, and lithium ions are 
presented as a function of electric current and convection. The theoretical values (theoret) for electric 
current and concentrations of potassium and lithium are calculated by using the theoretical model 
described in the present paper. In the theoretical calculations, convection and the concentration of 

Consider a few special cases: 

1) When the outflow stream va = 0, the selectivity ratio (3) for trace ions 
takes a simple form 

Y !  Y !  - S = - exp 
Y2 Y3 

Equation (15) is the same as previously obtained in the ternary case when 
the cation fluxes were zero ( I ) .  Note that the exponential dependence of 
the selectivity ratio on convection is also valid for trace ions. 

2) The diffusion potential is equal to zero, i.e., h, = &. In this case the 
coupling effects of diffusion vanish since D2, = D3, = 0. The binary 
system influences only the transport numbers of the trace ions (see Eqs. 
9b and 9c) through the conductance, which is proportional to h, + &. The 
solution of the problem does not become easier in practice. 
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TRACE IONS IN COUNTERCURRENT ELECTROLYSIS 599 

0.83 
0.75 
0.61 
0.47 
0.23 

1.59 
1.44 
1.08 
1.02 
0.54 

3.25 
3.61 
2.70 
2.18 
1.25 

5.99 
6.43 
6.29 
5.94 
4.7 1 

10.6 
11.1 

11.0 
9.92 

9.09 

20.2 
20.9 
21.1 
20.2 
17.3 

3.04 
3.73 
4.12 
4.52 
4.57 

4.08 
5.46 
5.70 
7.41 
8.10 

8.79 
9.72 

10.8 
13.2 
14.7 

4.42 
4.28 
3.43 
2.31 
1.08 

8.54 
7.51 
5.94 
5.40 
2.94 

16.7 
15.2 
13.6 
11.0 
6.73 

2.91 1.54 3.40 
2.52 1 .I3 4.36 
2.85 2.10 5.99 
3.3 1 2.73 9.04 
4.21 5.02 21.1 

I .67 1.43 2.39 
2.14 1.70 3.64 
2.50 1.92 4.80 
2.95 2.33 6.87 
3.88 3.54 13.7 

1.89 1.39 2.63 
2.02 1.58 3.19 
2.23 1.80 4.01 
2.85 2.1 1 6.01 
3.67 2.96 10.9 

sodium in Compartments a and j3 are taken to be exact. Dimensionless values for the parameters are 
calculated from the expenmFnta1 and theoretical ones by taking All = 12.5 cm, co = 0.01 mol/dm3, 
Do = 2 X cm2/s, vc = VcI/ADo, I, = Il/c@Do, Ki = J;l/c@o, and y; = qlco. Concentrations 
in Compartment p are&,+ = 4.35,y&+ = 1 X and y&i+ = 5 X 

3) The binary system is homogeneous, i.e., dc,/a!x = 0. This resembles 
the case where the diffusion potential is equal to zero. The solution of the 
problem is greatly simplified, and the concentration ratio for trace-ion 2 
is 

V a  4 = exp ( - T 2 ) [  1 + -(exp (T2)  - I)] 
Y2 d22T2 

The concentration ratio for trace-ion 3 can be obtained by changing the 
subscripts 2 to 3 in Eq. (16). Furthermore, if there is no outflow from 
Compartment a, i.e., va = 0, the separation ratio for the trace ions 
assumes the form given by Eq. (15). 

4) When the diffusion potential is zero (A, = A4) and the electric current 
densityz, = 0, equations identical to (15) and (16) are obtained. However, 
remember that the concentration levels differ greatly for the case where 
I, z 0. 
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EX PER1 M ENTAL 

KONTTURI 

The system studied had NaCl-H,O as the binary system and Li+ and 
K+ as the trace ions of the corresponding chlorides. The apparatus used is 
schematically described in Fig. 1. A detailed description of the experi- 
mental set-up has been presented previously (3). For every measurement 
the total concentration in Compartment was kept constant (-4.35 X 
lo-* mol/dm3) and the concentrations of the different ions in this 
compartment were kept constant throughout the experiment: CNa+ = 
4.35 X lo-* mol/dm3, Ca+ = 1 X mol/ 
dm3. The concentrations in Compartment a were determined by analyz- 
ing the concentrations in the outflow stream @. The system was 
considered to have reached the stationary state when the concentrations 
in the outflow stream remained unchanged. 

The measurements were carried out by changing both the convection 
and the electric current density. In practice, we chose five different 
convective regimes. With the aid of the mathematical model presented 
here, suitable electric current densities were calculated to obtain 
boundary concentrations P,,+ = 1 X lo-,, 2 X lo-', and 4.35 X lo-, moll 
dm3 for sodium and for each of five convection values. The concentra- 
tions of Li', K+, and Na' ions were determined by AAS. 

mol/dm3, and CEi+ = 5 X 

RESULTS 

The results of the measurements in the binary system NaCl-H,O with 
trace ions Li' and K+ with varying electric current density and 
convection are reported in Table 1. The theoretical results are reported in 
the same table, and there is satisfactory agreement between theory and 
experiment. For higher current densities the predictions of the model 
deviate from the results obtained. Evidently this is due to the leakage of 
ions through the ion-exchange membrane. 

Figure 2 shows the logarithm of the selectivity ratio as a function of 
convection for different cation pairs. Again, an exponential dependence 
of the selectivity ratio on convection is clearly evident. It is also clearly 
seen that the stronger the coupling of the binary system (i.e., the greater 
the concentration gradient of the binary system), the better is the 
separation. 

From the results we can conclude that trace-ion assumptions (4) and 
(5) are justified when the concentrations of the trace ions are about one 
thousand times smaller than the concentration of the salt of the binary 
system. Of course, the validity of the trace-ion assumptions can be 
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TRACE IONS IN COUNTERCURRENT ELECTROLYSIS 601 

RG. 2. The experimentally obtained relationships between the logarithm of the selectivity 
ratio (Q and the convection (v') in the system NaCI-H20 with the trace ions Li+ and K+. In 

Figs. (a), (b), and (c) the Curves I ,  2, and 3 denote yka+ = 1, 2, and 4.35, respectively. 
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602 KONTTURI 

estimated with the aid of theoretical models for ternary and quaternary 
systems. However, the validity of the trace-ion approach depends greatly 
on the particular case studied. From this work it is clear that the trace-ion 
assumptions appear to be valid when the concentrations of the trace ions 
are ( 5  X is the concentration of the salt of the binary 
system). 

CONCLUSIONS 

In countercurrent electrolysis in a thin porous membrane, the behavior 
of trace ions added to the binary system can be modeled to obtain closed 
form solutions. This model predicts the transport behavior of trace ions 
fairly well. The predictions of the theoretical model and the experimental 
results verify that the binary system strongly couples the diffusion of trace 
ions when the binary system is nonhomogeneous. An increase of those 
coupling effects increases the separation efficiency. 

The main merit of the trace-ion concept is its suitability to model the 
separation process based on countercurrent electrolysis when the 
impurity ions are present only in small amounts. The reason for this is 
that mathematical modeling of the separation process becomes signifi- 
cantly easier than for real ternary or quaternary systems. 
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